~

9

10

13

29

30

31

This Python script implements the BB84 quantum key
distribution protocol using
Qiskit and IBM’s quantum computers.

The BB84 protocol is a quantum cryptography protocol
developed by Charles
Bennett and Gilles Brassard in 1984 for secure communication
It leverages the
properties of quantum mechanics to create a secure key for
encryption between
two parties, Alice and Bob.

In this script, Alice generates a random set of bits and
encodes them into

quantum states (qubits) using a random set of bases. She
then sends these

qubits to Bob, who measures them using a random set of bases

After the

transmission, Alice and Bob publicly share their bases and
keep the bits

where they used the same base, forming a secure key.

This script runs the BB84 protocol on an IBM quantum
computer or simulator
specified by the ’backend’.

Note: Running circuits on real quantum computers may take
some time due to the

queue .

Author: Abraham Reines

Date: July 4, 2023

from qiskit import QuantumCircuit, execute, IBMQ
import numpy as np

Load IBM Q account

IBMQ.save_account (’YOUR_API_KEY’) # replace ’YOUR_API_KEY’
with your actual token

provider = IBMQ.load_account ()

backend = provider.get_backend(’ibmg_gasm_simulator’) # or
another backend

Define the quantum circuit

def bb84_circuit (bit, base):
circuit = QuantumCircuit(l, 1) # One qubit and one
classical bit

79

80

81

Prepare qubit in the correct state

if bit == 1:
circuit.x(0)
if base == 1:

circuit.h(0)

circuit.barrier ()
return circuit

Alice generates bits
n = 100
alice_bits = np.random.randint (2, size=n)

Alice gemnerates random bases
alice_bases = np.random.randint (2, size=n)

Bob generates random bases
bob_bases = np.random.randint (2, size=n)

Alice sends qubits to Bob one at a time, and Bob measures
each qubit

alice_key = []

bob_key = []

for i in range(n):
Alice prepares a qubit
alice_circuit = bb84_circuit(alice_bits[i], alice_bases|[

il)

Bob measures the qubit in his chosen base
bob_circuit = bb84_circuit (0, bob_bases[i])
bob_circuit.measure (0, 0)

total_circuit = alice_circuit.compose(bob_circuit) #
Use compose instead of +

job = execute(total_circuit, backend, shots=1)
result = job.result ()
counts = result.get_counts ()

bob_bit = int(list(counts.keys()) [0])

Alice and Bob discard the bit if they used different

bases
if alice_bases[i] == bob_bases[i]:
alice_key.append(alice_bits[i]

)
bob_key.append (bob_bit)

Check if keys are the same
print (alice_key == bob_key)

